Mark Scheme
(Results)

November 2021

Pearson Edexcel GCSE
In Combined Science (1SC0) Paper 2PH

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at:www.pearson.com/uk

November 2021
Publications Code 1SCO_2PH_2111_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark schemes have been developed so that the rubrics of each mark scheme reflects the characteristics of the skills within the AO being targeted and the requirements of the command word. So for example the command word 'Explain' requires an identification of a point and then reasoning/justification of the point.
Explain questions can be asked across all AOs. The distinction comes whether the identification is via a judgment made to reach a conclusion, or, making a point through application of knowledge to reason/justify the point made through application of understanding. It is the combination and linkage of the marking points that is needed to gain full marks.
When marking questions with a 'describe' or 'explain' command word, the detailed marking guidance below should be consulted to ensure consistency of marking.

Assessment Objective		Command Word	
Strand	Element	Describe	Explain
AO1*		An answer that combines the marking points to provide a logical description	An explanation that links identification of a point with reasoning/justification(s) as required
AO2		An answer that combines the marking points to provide a logical description, showing application of knowledge and understanding	An explanation that links identification of a point (by applying knowledge) with reasoning/justification (application of understanding)
AO3	1a and 1b	An answer that combines points of interpretation/evaluation to provide a logical description	
AO3	$\begin{array}{\|l} 2 \mathrm{a} \text { and } \\ 2 \mathrm{~b} \end{array}$		An explanation that combines identification via a judgment to reach a conclusion via justification/reasoning
AO3	3 a	An answer that combines the marking points to provide a logical description of the plan/method/experiment	
AO3	3 b		An explanation that combines identifying an improvement of the experimental procedure with a linked justification/reasoning

*there will be situations where an AO1 question will include elements of recall of knowledge directly from the specification (up to a maximum of 15\%). These will be identified by an asterisk in the mark scheme.

Paper 2PH

Question number	Answer	Additional guidance	Mark
$\mathbf{1 (a i)}$	A description including		AO3 as the potential difference (voltage) increases so does the current (1)
idea of gradient of graph decreasing as V increases (1)	positive correlation at a decreasing rate non-linear not directly proportional		

Question number	Answer			Additional guidance	Mark
1(aii)	Award one mark for each row of the table			ignore any units added in the boxes	(2)
		voltage in V	current in mA		
	point P	1(.00)	20		
	point Q	3.4 ± 0.1	43 ± 1		

Question number	Answer	Additional guidance	Mark
$\mathbf{1 (\text { aiii) }}$	substitution (1) $(R=) \frac{4.5}{51\left(\times 10^{-3}\right)}$	0.088(2) or 8.8(2) or 0.88(2) or 0.09 seen scores 1 mark	AO2
	evaluation (1) $88 .(2)(\Omega)$	0.088(2) k Ω or 0.09 k Ω scores 2 marks	award full marks for correct answer without working

Question number	Answer	Additional guidance	Mark
2(aiv)	an explanation linking any three of: identification of resistance increasing (1) heating (of the filament) (1)	(3) AO1 temperature increases	
	because of more collisions (1) of electrons (with ions / atoms / other electrons) (1)		

Total 9 marks

Question number	Answer	Additional guidance	Mark
2(a)	descriptions to include any two of		$\begin{aligned} & \hline \text { (2) } \\ & \text { AO1 } \end{aligned}$
	particles / atoms in solid close(r) together (1)	reverse argument difference asked for so must compare for subsequent marking points	
	particles / atoms in solid (vibrate) in fixed positions but particles in liquid move (freely) (1)		
	particles in a solid in regular arrangement but particles in liquid are randomly arranged (1)		
	particles in a liquid have more (kinetic) energy (than in a solid) (1)	allow answers in terms of forces between particles	

Question number	Answer	Additional guidance	Mark
2(b)	volume substitution (1) $1.5 \times 1.0 \times 0.2(0)(=0.3)$	(3) AO2 substitution in equation (1) mass $=2100 \times(0.3(0))$	ecf from calculated value of volume for this mark only
	evaluation (1) $=630(\mathrm{~kg})$	award 2 marks for $6.3 \times$ any other power of 10	
		5670 gains 1 mark from use of $1.5+1.0+0.2=2.7$	
		award full marks for correct answer without working	

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { number }\end{array} & \text { Answer } & \begin{array}{l}\text { Additional } \\ \text { guidance }\end{array} & \text { Mark } \\ \hline \mathbf{2 (c)} & \text { statements to include any two from } & & \begin{array}{l}\text { (2) } \\ \text { AO1 }\end{array} \\ & \begin{array}{l}\text { use cladding / (extra) insulation (1) } \\ \text { (1) }\end{array} & \text { create cavity } \\ \text { use silver / reflective / white (paint) (1) }\end{array} \quad \begin{array}{l}\text { plant trees around (wind break) (1) }\end{array} \quad \begin{array}{l}\text { draft } \\ \text { exclusion }\end{array}\right]$

Question number	Answer	Additional guidance	Mark
2 (d)	269 (K)	allow use of 273.14? $269.14(\mathrm{~K})$	(1) AO2

Question number	Answer	Additional guidance	Mark
3 (a)(i)	example: rectangles in (approximately) correct position (1) all four poles correctly labelled (1)	judge by eye but do not allow rectangles in contact	$\begin{aligned} & \hline \text { (2) } \\ & \text { AO3 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
$\mathbf{3}$ (a)(ii)	a description to include	(3) AO1	
place a (plotting) compass on the paper (near to the magnet(s)) and mark direction of the field (at that point) (1)	place a (plotting) compass on the paper (near to the magnet(s)) and put a dot at each end of the needle	determine how the field continues from that point (1) that one end of the needle is over the mark (just made) join up the dots	
connect field lines to reveal overall shape(1)	jomps		

Question number	Answer	Additional guidance	Mark
$\mathbf{3 ~ (b) ~ (i) ~}$	substitution of values (1) $1.2=\frac{K}{4(.0)^{2}}$	allow rearrangment before substitution $(\mathrm{K}=) 1.2 \times 4(.0)^{2}$	(3) AO2 rearrangement and evaluation (1)
	(K=)19	19.2 0.00192 award full marks for the correct answer without working independent mark	
	unit (1)	N m²	
	N cm ${ }^{2}$		

Question number	Answer	Additional guidance	Mark
$\mathbf{3 ~ (b) (i i) ~}$	same magnitude and opposite direction (1)	allow (now) attraction for opposite direction	(1) AO1

Question number	Answer	Additional guidance	Mark
4 (a) (i)	D R and S		(1) AO1
	A, B and C are incorrect because the difference in vertical positions are all less than that shown by R and S		

Question number	Answer	Additional guidance	Mark
4 (a)(ii)	recall (1) work done = force x distance substitution and evaluation (1) (work done =) 14,000 (J)	(work done) $=700 \times$ 20	(2) AO1
		award full marks for the correct answer without working	

Question number	Answer	Additional guidance	Mark
4 (a)(iii)	substitution (1) $11250=m \times 10 \times 15$ rearrangement and evaluation (1) $\text { (mass=) } 75(\mathrm{~kg})$	award full marks for the correct answer without working. if no other marks scored then award 1 mark for answers of 0.013 (substitution mark using $\mathrm{h}=15$)	$\begin{aligned} & \hline \text { (2) } \\ & \text { AO2 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
4 (a)(iv)	An explanation linking some work is done to overcome friction/air resistance (1) energy is dissipated /transferred to the environment (1)	allow energy is lost thermal energy	$\begin{aligned} & \text { (2) } \\ & \text { AO1 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
4 (a)(v)	C increase the efficiency of the cyclist and bicycle	(1) AO1	
A is incorrect because lubrication has no effect on work done against gravity B is incorrect because lubrication will increase efficiency D is incorrect because the overall energy transfer will not increase			

Question number	Answer	Additional guidance	Mark
4 (b)	substitution (1) $2,800=1 / 2 \times 85 \times v^{2}$ rearrangement (1) $\left(v^{2}=\right) \frac{2800 \times 2}{85}$	allow substitution and rearrangement in either order	(3) AO2
	evaluation (1)	66 or 65.88 seen	
	$v=8.1(\mathrm{~m} / \mathrm{s})$	allow values that round to 8.1 e.g 8.1168 award full marks for the correct answer without working	

Question number	Answer	Additional guidance	Mark
$\mathbf{5}(\mathbf{a)}$ (i)	voltmeter connected in parallel with device (1) ammeter connected in series with device (1)	voltmeter connected in parallel with battery may be in top or bottom of circuit and could be inside or outside the voltmeter connections	(2) AO1

Question number	Answer	Additional guidance	Mark
$\mathbf{5 ~ (a) ~ (i i) ~}$	recall and substitution (1)	voltmeter connected in parallel with battery allow values that round to 58 e.g. 57.6 evaluation (1) (power =) 58 (W)	(2) AO2

Question number	Answer	Additional guidance	Mark
5 (a)(iii)	```substitution (1) (power =) 12 x 600(/1000) x 7 (x60) evaluation (1) (energy =) 3000 (J)```	allow values that round to 3000 e.g 3024 allow 1 mark for any other values of 3(.024) to any power of ten. if no other marks scored then award 1 mark for answers of 50,400 or 50.4 (substitution mark) award full marks for the correct answer without working.	$\begin{aligned} & \hline \text { (2) } \\ & \text { AO2 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
5 (b) (i)	17.7 (A)		(1) AO1

Question number	Answer	Additional guidance	Mark
5 (b) (ii)	(The resistance) increases		(1) AO1

Question number	Answer	Additional guidance	Mark
5(b) (iii)	B 5A fuse	(1) AO1	
A is incorrect because it has a smaller value than the expected current C and D are incorrect because they have a much higher value than the expected current			

Question number	Answer	Additional guidance	Mark
5 (b)(iv)	An explanation linking two of thick(er) wires have low(er) resistance (1) less thermal energy transferred (in the wires)(1) less potential difference / voltage (drop) across the wires (1)	allow reverse argument allow so wires do not get hot allow less voltage is lost more current can be carried	$\begin{aligned} & \hline \text { (2) } \\ & \text { AO1 } \end{aligned}$

Total for question 5 = 11 marks

Question number	Answer	Additional guidance	Mark
6(a)(i)	substitution into $\begin{align*} & \Delta \mathrm{Q}=\mathrm{m} \times \mathrm{s} \times \Delta \mathrm{T} \\ & (\Delta \mathrm{Q})=1.41 \times 4200 \times(100-25) \\ & \text { evaluation } \tag{1}\\ & \text { (energy }=) 444,150(\mathrm{~J}) \\ & \text { answer to } 2 \mathrm{sf} \tag{1}\\ & 440,000(\mathrm{~J}) \end{align*}$	ignore POT error for this mark independent mark allow 3 sf 444,000 award full marks for the correct answer without working award 1 mark for answers with values 148,050 or 592,200 (incorrect temp and sf) award 2 marks for answers with values 150,000 or 148,000 or 590,000 or 592,000 (incorrect temp but allowed sf)	$\begin{aligned} & \text { (3) } \\ & \text { AO2 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
6(a)(ii)	substitution into $\begin{align*} & \Delta \mathrm{Q}=\mathrm{m} \times \mathrm{L} \\ & 450,000=(1.41-1.21) \times \mathrm{L} \tag{1} \end{align*}$ rearrangment $\begin{equation*} L=\frac{450,000}{0.2} \tag{1} \end{equation*}$ evaluation $\begin{equation*} (\mathrm{L})=2200000(\mathrm{~J} / \mathrm{kg}) \tag{1} \end{equation*}$	allow substitution and rearrangement in either order accept 2250000 award full marks for the correct answer without working award 1 mark for answers that round to 330,000 or 370,000 (incorrect mass used)	$\begin{aligned} & \hline(3) \\ & \text { AO2 } \end{aligned}$

Question number	I ndicative content	Mark
*6(b)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. Procedure - Measure the temperature of the boiling water - Allow sufficient time for block to reach temperature of boiling water - Measure temperature of cold water in beaker - Using a thermometer - Transfer (hot) aluminium block to cold water in the beaker. - Work quickly to avoid thermal energy loss during transfer - Measure temperature of water - Stir to ensure even distribution - Measure maximum temperature reached by water - Calculate temp rise of water by subtracting initial from final temperature. - Calculate temp drop of aluminium by subtracting final temperature from 100. - Find mass of beaker and water and aluminium - Use a balance - Empty water from beaker and dry beaker and block - Weigh beaker and block alone - Find mass of water by subtraction. - Allow plausible method of finding mass of water before putting block in. Process results - Calculate thermal energy gained water using $\Delta \mathrm{Q}=\mathrm{m} \times \mathrm{c} \times \Delta \theta$ - Thermal energy gained by water = thermal energy lost by aluminium - Specific heat capacity of aluminium $=$ $\frac{\text { thermal energy transferred }}{\text { mass of } \mathrm{Al} \times \text { temp drop of } \mathrm{Al}}$	$\begin{aligned} & \text { (6) } \\ & \text { AO2 and } \\ & \text { AO3 } \end{aligned}$

Level	Mark	Descriptor
	0	- No awardable content
Level 1	1-2	- The plan attempts to link and apply knowledge and understanding of scientific enquiry, techniques and procedures, flawed or simplistic connections made between elements in the context of the question. (AO2) - Analyses the scientific information but understanding and connections are flawed. An incomplete plan that provides limited synthesis of understanding. (AO3)
Level 2	3-4	- The plan is mostly supported through linkage and application of knowledge and understanding of scientific enquiry, techniques and procedures, some logical connections made between elements in the context of the question. (AO2) - Analyses the scientific information and provides some logical connections between scientific enquiry, techniques and procedures. A partially completed plan that synthesises mostly relevant understanding, but not entirely coherently. (AO3)
Level 3	5-6	- The plan is supported throughout by linkage and application of knowledge and understanding of scientific enquiry, techniques and procedures, logical connections made between elements in the context of the question. (AO2) - Analyses the scientific information and provide logical connections between scientific concepts throughout. A welldeveloped plan that synthesises relevant understanding coherently. (AO3)

Summary for guidance

Level	Mark	Additional Guidance	General additional guidance - the decision within levels e.g. - At each level, as well as content, the scientific coherency of what is stated will help place the answer at the top, or the bottom, of that level.
	0	No rewardable material.	
Level 1	1-2	Additional guidance Partially complete description of a suitable procedure with at least one measurement	Possible candidate responses Heat up the block in the boiling water. Then put the block into the cold water. Measure the temperature reached by the water.
Level 2	3-4	Additional guidance Mostly complete description of a suitable procedure with at least two measurements and some description of processing the results.	Possible candidate responses As above with Measure mass of water. Use $\Delta \mathrm{Q}=\mathrm{m} \times \mathrm{c} \times \Delta \theta$ to find thermal energy transferred
Level 3	5-6	Additional guidance Detailed description of a suitable procedure with most of the necessary measurements and a clear description of processing the results.	Possible candidate responses As above with Calculate temperature changes by subtraction. Calculate thermal energy lost by Al as being equal to thermal energy gained by water. Specific heat capacity of $\mathrm{Al}=$ thermal energy transferred mass of Al \times temp drop of Al

Question 6 = 11 marks
 Total for paper = 60 marks

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

